PEDIATRIC ASTHMA & BRONCHIOLITIS

Shelly Zimmerman DO FACOEP FACEP
Norman Regional Health Systems
Medical Student Clerkship Director
Director of Medical Education
Objectives

- Discuss and understand the current treatment recommendations for pediatric asthma in the ED as well as the discharge treatment when appropriate.
- Discuss and understand the benefit of dexamethasone over other steroid preparations for asthma treatment.
- Discuss and understand the current AAP diagnosis and management guidelines for bronchiolitis as they pertain to the Emergency Department.
- Discuss and understand the benefit of bronchodilator and dexamethasone treatment in a certain subset of bronchiolitis patients.
Differential Diagnosis of Wheezing

- Asthma
- Bronchiolitis
- URI with wheezing
- Pneumothorax
- GERD with aspiration pneumonia
- Foreign body aspiration
- Pneumonia
- CHF

- Congenital pulmonary anomaly
- Cystic Fibrosis
- a1-Antitrypsin deficiency
- Tracheoesophageal fistula
- Allergic reaction/anaphylaxis
- Vocal cord dysfunction
- Toxic Exposure
Asthma Update

- Epidemiology
 - 13% of all children in the US with 6.7 million experiencing active disease
 - 3.5 million have >1 exacerbation per year
 - 600,000 ED visits; highest % in children <4
 - Disproportionately affects minority children, those in urban areas, and those of lower socioeconomic status
Asthma Update

- Pathophysiology
 - Airway obstruction
 - Bronchial hyper-responsiveness
 - Airway inflammation
 - Increased mucous production
Asthma Update

- Determine the severity of the episode
 - National Asthma Education and Prevention Program (NAEPP) recommends using spirometry or peak expiratory flow rate (PEFR)
 - This may be impossible in young or severely ill children
- Subjective clinical scores have been validated for use in such cases
 - PASS- Pediatric asthma severity score
 - Modified pulmonary index
 - Pulmonary score
<table>
<thead>
<tr>
<th>Table 1</th>
<th>Acute asthma severity assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mild</td>
</tr>
<tr>
<td>Key examination elements (pediatric asthma severity score)</td>
<td></td>
</tr>
<tr>
<td>Wheezing</td>
<td>None or mild (0)</td>
</tr>
<tr>
<td></td>
<td>None or end of expiration only</td>
</tr>
<tr>
<td>Work of breathing</td>
<td>None or mild (0)</td>
</tr>
<tr>
<td></td>
<td>Normal or minimal retractions</td>
</tr>
<tr>
<td>Prolonged expiration</td>
<td>None or mild (0)</td>
</tr>
<tr>
<td></td>
<td>Normal or minimally prolonged</td>
</tr>
<tr>
<td>Other examination elements</td>
<td></td>
</tr>
<tr>
<td>Breath Sounds/aeration</td>
<td>Normal</td>
</tr>
<tr>
<td>Symptoms</td>
<td></td>
</tr>
<tr>
<td>Breathlessness</td>
<td>With activity or agitation</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Talks in</td>
<td>Sentences</td>
</tr>
<tr>
<td>Alertness</td>
<td>Alert</td>
</tr>
<tr>
<td>Measurements</td>
<td>Pulse oximetry</td>
</tr>
<tr>
<td></td>
<td>PEF (% of predicted by height)</td>
</tr>
</tbody>
</table>
Asthma Update

- Evaluation
 - CXR
 - Use is variable in evaluation of asthma
 - 14-56%
 - Predictors of pathological films
 - Fever
 - Hypoxia
 - Focal rales
 - 4.9% positive in suspicious patients
 - Potential risk
 - Radiation
 - False positive results
 - Have a high threshold for imaging
 - Laboratory testing
 - Rarely helpful in the evaluation and treatment
Asthma Update

- **Standard Tx**
 - Short acting B-agonists (SABA)
 - Albuterol or levoalbuterol
 - Bronchodilation or relaxation of the smooth muscle
 - Mild to moderate asthma
 - MDI with spacer over nebulizers
 - Shorter LOS and less tachycardia
 - In severe asthma nebulizers necessary
 - Continuous nebulized SABA
 - Severe exacerbations or poor response to back-to-back dosing
Asthma Update

Albuterol Dosing

<table>
<thead>
<tr>
<th>Weight</th>
<th>MDI</th>
<th>Nebulizer Intermittent</th>
<th>Nebulizer Continuous</th>
</tr>
</thead>
<tbody>
<tr>
<td><5 kg</td>
<td>2 puffs</td>
<td>1.25 mg</td>
<td>5 mg/hr</td>
</tr>
<tr>
<td>5-10 kg</td>
<td>4 puffs</td>
<td>2.5 mg</td>
<td>10 mg/hr</td>
</tr>
<tr>
<td>10-20 kg</td>
<td>6 puffs</td>
<td>3.75 mg</td>
<td>15 mg/hr</td>
</tr>
<tr>
<td>>20 kg</td>
<td>8 puffs</td>
<td>5 mg</td>
<td>20 mg/hr</td>
</tr>
</tbody>
</table>
Asthma Update

- Standard Tx
 - Ipratropium Bromide
 - Associated with lower admission rates for children with severe exacerbations and may reduce LOS
 - Relieves cholinergic bronchomotor tone and decreases mucosal edema and secretions
 - Multidose protocols effective
 - NNT to prevent one admission 7 in severe group, 12 in intermediate
 - Cost effective
Asthma Update

Ipratropium Bromide Dosing

<table>
<thead>
<tr>
<th>Weight (kg)</th>
<th>Nebulizer</th>
</tr>
</thead>
<tbody>
<tr>
<td><10 kg</td>
<td>250 micrograms X 3 doses</td>
</tr>
<tr>
<td>>10 kg</td>
<td>500 micrograms X 2 doses</td>
</tr>
</tbody>
</table>
Asthma Update

- Standard Tx
 - Corticosteroids
 - Reduce airway inflammation
 - Benefit
 - Moderate to severe cases
 - Administer early
 - Effect within 2 hours
 - Reduce hospitalization rates and relapse visits
 - Mild exacerbations should receive steroids if the have an incomplete response to inhaled SABA
Asthma Update

- Corticosteroid Dosing
 - Oral administration preferred
 - Prednisone or Prednisolone 2 mg/kg
 - Consider Dexamethasone
 - Similar relapse rates with less vomiting
 - 1-2 days dosing
 - Better compliance
 - IV dosing po
 - 0.3-0.6 mg/kg
 - Inhaled Corticosteroids
 - Chronic
<table>
<thead>
<tr>
<th></th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albuterol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delivery device</td>
<td>MDI with valved holding chamber</td>
<td>MDI with valved holding chamber or nebulizer</td>
<td>Nebulizer</td>
</tr>
<tr>
<td>Frequency</td>
<td>Intermittent treatment every 20 min up to 3 doses in 60 min</td>
<td>Intermittent or continuous treatment</td>
<td></td>
</tr>
<tr>
<td>Dosing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><5</td>
<td>2 Puffs</td>
<td>1.25 mg (intermittent)</td>
<td>5 mg/h</td>
</tr>
<tr>
<td>5–10</td>
<td>4 Puffs</td>
<td>2.5 mg</td>
<td>10 mg/h</td>
</tr>
<tr>
<td>10–20</td>
<td>6 Puffs</td>
<td>3.75 mg</td>
<td>15 mg/h</td>
</tr>
<tr>
<td>>20</td>
<td>8 Puffs</td>
<td>5 mg</td>
<td>20 mg/h</td>
</tr>
<tr>
<td>Ipratropium bromide</td>
<td>(Mix with albuterol)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>Not proved effective</td>
<td>Likely effective when added to β-agonist</td>
<td>Effective, particularly multiple doses</td>
</tr>
<tr>
<td>Delivery device</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><10</td>
<td>250 µg x 3 doses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>10</td>
<td>500 µg x 2 doses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systemic corticosteroids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>Consider if incomplete response to initial therapy</td>
<td>Administer as early as possible for maximal benefit</td>
<td></td>
</tr>
<tr>
<td>Route</td>
<td>Oral</td>
<td>Oral route as effective as parenteral</td>
<td></td>
</tr>
<tr>
<td>Dose</td>
<td>Prednisone or prednisolone</td>
<td>Prednisone or prednisolone or methylprednisolone</td>
<td>2 mg/kg (max 60 mg)</td>
</tr>
<tr>
<td></td>
<td>2 mg/kg (max 60 mg)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Asthma Update

- Standard Tx
 - Reassess the patient
 - If incomplete or poor response further treat with SABA and consider admission
 - Consider adjunctive treatments
Asthma Update

- Adjunctive Tx
 - Magnesium Sulfate
 - Improved pulmonary function and reduced hospitalization rates
 - 50-75mg/kg IV Max 2 g
Asthma Update

- Adjunctive Tx
 - Heliox-oxygen-delivered SABA 70:30 or 80:20
 - Thought to improve drug delivery to the lower airways secondary to lower density /airflow resistance
 - May improve outcomes in severe exacerbations
Asthma Update

- Adjunctive Tx
 - Systemic B-agonists
 - Can be used in severe exacerbations*
 - Epinephrine SQ or IM
 - 0.01 mg/kg, max 0.5mg
 - Terbutaline SQ or IV*
 - 12 micrograms/kg
Asthma Update

- Adjunctive Tx
 - BIPAP
 - Well tolerated and may reduce need for ICU admission
 - Benefits patients tiring from increased work of breathing and impending respiratory failure
 - IPAP Start 8-10 cm H2O then increase as needed to decrease work of breathing (10-16cm)
 - EPAP Start at 2-4 cm H2O (10cm)
 - At least 2cm differential
Asthma Update

- Disposition
 - Clinical Decision
 - Go back to PASS
Asthma Update

- NAEPP guidelines recommend ED providers consider initiating controller medications to appropriate patients
 - Many patients don’t have or don’t utilize appropriate follow up
 - Some primary care clinicians are not following the guidelines with these patients
 - *Briefly assess asthma control*
Asthma Classification

Age ≥ 12 years – Adults

<table>
<thead>
<tr>
<th>COMPONENTS OF SEVERITY</th>
<th>Classification of Asthma Severity</th>
<th>Intermittent</th>
<th>Persistent</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Impairment</td>
<td></td>
<td></td>
<td>Persistent</td>
<td></td>
</tr>
<tr>
<td>Symptoms</td>
<td></td>
<td>≤2 days/wk</td>
<td>>2 days/wk not daily</td>
<td>Daily</td>
</tr>
<tr>
<td>Nighttime Awakenings</td>
<td></td>
<td>≤2x/month</td>
<td>3-4x/month</td>
<td>>1x/wk not nightly</td>
</tr>
<tr>
<td>SABA Use for Symptoms</td>
<td></td>
<td>≤2 days/wk not daily</td>
<td>Daily</td>
<td>Several times daily</td>
</tr>
<tr>
<td>Interference with Normal Activity</td>
<td></td>
<td>None</td>
<td>Minor limitation</td>
<td>Some limitation</td>
</tr>
<tr>
<td>Lung Function</td>
<td></td>
<td>Normal FEV1, between exacerbations</td>
<td>>80% Normal</td>
<td>60-80% Reduced 5%</td>
</tr>
<tr>
<td>FEV1/FEV1/FVC</td>
<td></td>
<td>Normal</td>
<td>>80% Normal</td>
<td>60-80% Reduced 5%</td>
</tr>
<tr>
<td>Risk</td>
<td>Exacerbations requiring oral steroids</td>
<td>0-1/year</td>
<td>≥2/year</td>
<td>Consider severity & interval since last exacerbation. Frequency & severity may fluctuate over time for patient of any severity class.</td>
</tr>
<tr>
<td>Recommended Step for Initiating Treatment</td>
<td></td>
<td>Step 1</td>
<td>Step 2</td>
<td>Step 3</td>
</tr>
</tbody>
</table>

Treatment recommendation

Step 1: Short-acting beta agonist PRN

Step 2: Low-dose inhaled corticosteroid

Step 3: Low-dose inhaled corticosteroid + long-acting beta agonist, OR medium-dose inhaled corticosteroid

Step 4: Medium-dose inhaled corticosteroid + long-acting beta agonist

Step 5: High-dose inhaled corticosteroid + long-acting beta agonist AND consider omalizumab for patient with allergies
Asthma Update

- Communication
 - Parent
 - Child: age/development
 - Controller medications at home
 - Improves adherence
 Improving control
 Decreasing exacerbations and ED visits
Bronchiolitis: Epidemiology

- MC lower respiratory tract infection in infants and toddlers
- Pediatric patient exclusively the result of a viral infection, MC RSV
- Hospital Costs $700 million annually
 - 132,00-172,00 hospitalizations
 - Ave 3-4 days
Bronchiolitis: Epidemiology

- Significant decrease in deaths to 500 annually secondary to immunization of high risk infants
- High degree of morbidity
- Risk factors for hospitalization
 - Male sex
 - Chronic illness
 - Lower socioeconomic status
 - Smoke exposure
 - Contact with other children.
Bronchiolitis: Pathophysiology

- Bronchiole obstruction
 - Edema
 - Cellular debris
 - Hyperplastic lymphoid follicles
 - Mucous
 - Results in wheezing

- Degree of obstruction changes as these areas are cleared accounting for the changing clinical picture.
Bronchiolitis: Clinical Features

- Self limited: 7-10 days (28)
- Ubiquitous (90%)
- Can be severe
- Preceded by a 1-3 day hx of URI symptoms, then followed by wheezing and symptoms of respiratory distress.
AAP Bronchiolitis Treatment Guidelines

- 2006 Published in Pediatrics
 - Evidence based
- Improvement in care
- Appropriate decreased resource utilization and costs
- Unfortunately poor adherence
High risk infants are at risk for apneic episodes, severe respiratory distress and respiratory failure.

- AAP Guideline 1b
- “Clinicians should assess risk factors for severe disease........”
Bronchiolitis: Hx

- Special consideration.....
 - Immunodeficiency
 - Cystic fibrosis
 - BPD
 - Hemodynamically significant congenital heart disease
 - Neuromuscular disorders
 - Prematurity/Birth Weight
 - Age less than three months*
 - Hx of Apnea
 - Hydration status
Bronchiolitis: PE

- Sx of respiratory distress
 - Tachypnea
 - Nasal flaring
 - Retractions
 - Grunting
 - Respiratory rate > 60

- Presence of cyanosis
- Episodes of restlessness or lethargy
- Evidence for moderate or severe dehydration
Bronchiolitis: Dx

- Diagnostic Laboratory and radiographic tests are not indicated
- AT THE CORRECT TIME OF YEAR AND IN THE CORRECT AGE GROUP IT IS A CLINICAL DIAGNOSIS

- AAP Guideline 1a
- “Clinicians should diagnosis bronchiolitis and assess disease severity on the basis of hx and pe. Clinicians should not routinely order laboratory and radiographic studies for the diagnosis.”
Bronchiolitis: Dx Special Consideration

- >1 month with fever
 - The risk for SBI is low except for UTI

- <1 month with fever
 - Same/similar risk for SBI as infants this age without bronchiolitis
 - Septic workup
Bronchiolitis: Dx Special Consideration

- Routine radiography not indicated
- May be useful when....
 - Hospitalized children do not improve as expected
 - Severity of disease
 - Another diagnosis likely
Routing testing for specific viral agents does not alter the management or outcome of the illness and is not needed.

- Consider if admitting to reduce nosocomial transmission
Bronchiolitis: Tx

- Symptomatic Treatment
 - Goal to maintain adequate oxygenation and hydration
 - Nasal suctioning beneficial
 - no benefit of deep suctioning
Bronchiolitis: Tx

- Bronchodilators: B2 agonists, epinephrine
 - Not routinely recommended
 - May be of benefit in a subset of patients
 - Hx of atopy or parent/sibling with asthma

- AAP Guideline 2a
 - “Bronchodilators should not be routinely used in the management of bronchiolitis.”

- AAP Guideline 2b
 - “A carefully monitored trial of a-adrernergic or b-adrenergic medications is an option....continue only if there is a documented clinical response to the trial use on an objective means of evaluation.”
Bronchiolitis: Tx

- Corticosteroids
 - Meta-analysis including 2596 children showed no benefits in hospital admission rates, LOS, clinical score after 12 hours, hospital revisit or readmission rates
 - No benefit in admitted mechanically ventilated patients
- AAP Guideline #3
 - Corticosteroid medications should not be used routinely in the management of bronchiolitis.
- Alasari et al. Pediatrics Sept 2013
 - Atopic kids or family history of asthma
 - Decreased LOS 31%
Bronchiolitis: Tx

- Antibiotics
 - Should NOT be routinely used
 - Use only when a coexisting bacterial infection is present and use antibiotic appropriate for that infection

- Antiviral
 - Benefit in only select situations
 - Mechanically ventilated
 - Difficult to give, health risk to care givers, expensive
Bronchiolitis: Tx

- Heliox
 - Meta-analysis showed improved clinical scores at 1 hour but no sustained benefit

- Inhaled glucocorticoids
 - No benefit

- Surfactant
 - In intubated patients, may shorten duration of mechanical ventilation and ICU LOS
Bronchiolitis: Tx

- Chest Physiotherapy
 - No benefit

- Hypertonic Saline
 - 3%-5% safe and effective
 - Associated with decreased LOS for hospitalized patients and improved clinical scores
 - No proven benefit in the ED

- High Flow Nasal Cannula (HFNC)
 - Heated and humidified O2 delivered at 8L-40L
 - Results in decreased rates of intubation in ICU patients
 - Studies small but showing promise
Bronchiolitis: Tx

- Prophylaxis
 - Palivizumab-monoclonal antibody
 - Given monthly injections during RSV season (Nov-March in US)
 - Decreases hospitalizations in high risk children
Child with suspected RSV infection

Clinical diagnosis
- Peak RSV season?
- Born term without serious complications
- Absence of cardiopulmonary or immune disease?
- Absence of significant respiratory distress, apnea, hypoxia, signs of dehydration?
- Child < 2 months

no

Child > 28 days

yes

RSV PCR
- Consider urine culture if febrile
- Consider blood culture if < 60 days
- Consider CXR

no

Full sepsis workup if febrile
- RSV PCR
- Consider CXR

diagnosis of RSV

yes

Improvement after supportive care initiated (e.g., suctioning, oxygen)?

no

Consider DC if:
- well hydrated
- no oxygen requirement
- good follow-up
- no respiratory distress
- no (risk of) apnea

no

Trial of bronchodilators (albuterol, racemic epinephrine)

Clinical improvement?

yes

Continue bronchodilator therapy

no

Consider other therapy (e.g., nebulized 3% saline, ribavirin) after discussion with specialist

Significant symptoms persist?

Admission to hospital if:
- dehydrated
- oxygen requirement
- poor follow-up
- respiratory distress
- (risk of) apnea
Key Points: Asthma

- Knowledge of the current asthma guidelines and understanding how to evaluate for severity of symptoms will improve your asthma care.

- Consider dexamethasone as your first line steroid.

- Consider magnesium and BIPAP for the severe asthmatic.

- Consider addressing home controller medication needs.
Key Points: Bronchiolitis

- The diagnosis and management of routine bronchiolitis in the ED is made clinically and the treatment is supportive.

- RSV testing during season is only beneficial for nosocomial transmission concerns.

- In a subset of patients* a trial of bronchodilator is indicted with continuation and the addition of dexamethasone if responsive.
References

References

References

References

References
